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9.1
Introduction

Mood and anxiety disorders are chronic, disabling conditions that impose
enormous costs on both individuals and society at large [1–5]. These disorders are
the most frequent diagnosed neuropsychiatric diseases in Western countries.
According to a recent 3-year multimethod study covering 30 European countries
and a population of 514 million people, anxiety and mood disorders had the highest
12-month prevalence estimates (total 14 and 6.9%, respectively) compared with all
other psychiatric conditions [2]. Although there are many treatment options
available for these disorders, drug discovery research in this area is still very active,
with the objective of finding alternative, better tolerated, and more effective
pharmacological treatments for anxiety and mood disorders.
The reliance on animal models of these conditions is crucial to find new

treatments. Preclinical research has devised numerous ways to test for anxiety
and mood, with well over 100 tests and models by recent counts [6]. The
specifics of these tests have been described in many comprehensive reviews on
this topic [6–9] and we will only briefly introduce the most frequently used
ones here to illustrate the strengths and weaknesses of current approaches in
general. One general consideration from the outset is validity. The validity of a
test for anxiety/mood in an animal rests on three criteria: face validity (Does it
measure something analogous to one or more human anxiety/mood symp-
toms?), predictive validity (Is it reliably sensitive to clinically efficacious
anxiolytics/antidepressants?), and construct validity (Does it involve some of
the same pathophysiological mechanisms found in human anxiety/mood
disorders?) [10]. None of the available tests or models of anxiety or mood can
be said to unequivocally meet these criteria.
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9.2
Animal Models of Anxiety Disorders

9.2.1
Preclinical Measures of Anxiety

A group of tests that have been a mainstay of preclinical anxiety research for many
years [11] assay anxiety-like behavior by generating a conflict between a drive to
approach novel areas and simultaneously avoid potential threat therein (Figure 9.1).
These simple tests that include the open-field, elevated plus maze, and light–dark
exploration tests were developed in the 1980s to exploit the natural tendency of
mainly rats [12] and mice [13,14], but also guinea pigs [15] and gerbils [16] to prefer
enclosed areas over exposed/elevated places. They have been used in nearly 10 000
drug discovery-related experiments and continue to be very popular. More than half
of the rodent-based experiments on anxiety-related drugs have employed one or
more of these tests, and among them, by far the most commonly used has been the
elevated plus maze.
While the approach–avoidance tests generate a conflict, the term “conflict-based

test” has often been used to describe measures of the suppression of a behavior by
mild electric shock. This group includes the Vogel conflict [17] and Geller–Seifter

Figure 9.1 The five most commonly used tests in anxiolytic drug discovery. Values represent the
number of experiments performed with each test as of 2012 ( Sources: HCAPLUS, Medline,
Embase, and Biosis.)
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[18] tests, which measure anxiolytic-like activity as the maintenance of a behavioral
response (licking and bar pressing) despite receipt of shock. These tests were part
of many drug discovery programs in the 1980s and 1990s, but have fallen out of
favor perhaps because they require animals to be trained over multiple days and are
more labor intensive and time consuming than the approach–avoidance tasks.
Some anxiety tests have been designed to tap into fundamental defensive

responses shown by animals in the face of immediate danger. Such defensive or
“fear” behaviors can be conceptually distinguished from the anxiety states
produced by less imminent, more ambiguous threats [11], and may be most
relevant to anxiety disorders, such as panic disorder (PD) and posttraumatic stress
disorder (PTSD). The mouse defense test battery (MDTB) was designed to provide
multiple measures related to fear and anxiety, based on observations of how wild
rodents respond to danger [19]. In this task, mice are placed in an oval runway and
tested for responses (fight, flight, freeze, vocalize, scan, etc.) to an approaching
anesthetized rat (a natural predator). Interestingly, specific behavioral measures in
this test are sensitive to specific classes of anxiolytic medication, with, for example,
benzodiazepines (BZ) that are effective in generalized anxiety disorder (GAD)
reducing risk assessment and serotonergic agents that are efficacious in PD and
PTSD, attenuating fight and flight behaviors [20]. In spite of these promising
results, however, the task has not been widely adopted, again likely due to the
training and technical demands involved. As a compromise, some researchers
incorporated measures derived from the analysis of defensive behavior into the
simpler anxiety-related assays such as the elevated plus maze, in some cases
improving the sensitivity to certain anxiolytic classes [21].
Another set of fear-based tests involve variations on classical Pavlovian condition-

ing. Here, the animal learns to associate a context or specific environmental stimulus
(e.g., a light or a sound) with electric shock to produce a conditioned fear response
that can be quantified in various ways (freezing, escape, avoidance, startle, etc.).
Studies of Pavlovian fear have contributed greatly to the understanding of the basic
neural and molecular mechanisms of memory, but have not been traditionally
considered tests for use in anxiolytic drug discovery. This may be changing, however,
with the recent focus on devising ways to pharmacologically attenuate fearful
memories through the process of reconsolidation or extinction [22] and, more
generally, by a growing appreciation of abnormal learning and cognition in anxiety.

9.2.2
Preclinical Anxiety Models and Endophenotypes

Tests for anxiety, in which the animal is placed in an experimental situation to
evoke an acute anxiety-like response, can be distinguished from models of anxiety,
where the animal has been manipulated in some way to produce a more lasting
increase in anxiety. The goal of anxiety models is to produce a form of abnormally
elevated anxiety that more closely approximates to the pathology of an anxiety
disorder (Table 9.1). This can be achieved, for example, by acutely or chronically
subjecting animals to stressors prior to testing [23,24]. Another approach involves
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identifying genetic populations or engineering animals that are inherently anxiety
prone. Examples of the former are inbred mouse strains, such as BALB/cJ, and
selectively bred “high-anxiety behavior” rat and mouse lines [25,26]. Illustrative of
the latter are the plethora of transgenic and gene knockout mice that have been
generated and tested for anxiety-like phenotypes. These mutant mice have been
valuable as models to screen for novel anxiolytics [27–29].
The term endophenotype describes a symptomatic feature or premorbid risk

factor of an anxiety disorder that can be more readily quantifiable than the disease
as a whole. Certain rodent behavioral measures can also be considered endopheno-
types of specific anxiety symptoms: risk assessment and flight in the MDTB, for
example, can be related to threat hypervigilance and threat avoidance in GAD and
PD, respectively [19]. Moreover, assessing the extinction of fearful memories has
become a popular measure in anxiety research because the procedures, as well as
the underlying neurobiology, closely overlap in animals and humans, and
extinction has a close therapeutic analog in the form of exposure therapy. The
objective of many preclinical extinction studies is to screen for drugs that can be
administered as adjuncts during exposure to strengthen the formation of extinction
memories and thereby reduce the future recurrence of anxiety symptoms [30,31].
There have been some successes in developing clinically efficacious anxiolytics
(e.g., D-cycloserine) based upon predictions from studies of fear extinction in
rodents [32], and this is currently an active approach for further drug discovery.

Table 9.1 Modeling symptoms of anxiety disorders in rodents.

Symptom Assay Situation

Avoidance of places from
which escape could be
difficult

Exploration of exposed and
well-lit spaces in the elevated
plus maze and light–dark box

Acute avoidable

Anxiety provoked by situations
for which opposing impulses
lead to decisional uncertainty

Increase in punished
responding in the punished
drinking and four-plate tests

Acute avoidable

Anxiety provoking obsessions/
impulsive behavior

Marble burying Acute nonavoidable

Difficulty in concentrating Cognitive impairment due to
predator stress

Acute nonavoidable

Worry/difficult to control the
worry

Risk assessment in the
defense battery

Acute nonavoidable

Irritability/aggressivity Defensive aggression in the
defense battery, human threat

Acute nonavoidable

Sudden onset of intense
fearfulness

Flight in the defense battery Acute nonavoidable

Autonomic hyperarousal Stress-induced
hyperthermia

Acute nonavoidable

Difficulty in concentrating,
hyperarousal (PTSD)

Trauma-induced long-term
cognitive or adaptative
deficits

Chronic nonavoidable
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9.3
Animal Models of Mood Disorders

9.3.1
Major Depressive Disorder

Given the subjective and heterogeneous nature of most of the core symptoms of
major depressive disorder (MDD) and the lack of valid state markers, modeling this
condition poses a number of substantial challenges. Further complication derives
from the observation that current antidepressants, which all target monoaminergic
neurotransmission, have inconsistent effects in the clinic (about 50% of patients
will not respond to a first-line treatment). This has important implications for
modeling as it limits the use of reference drugs as a validation criterion for novel
drug effect. Despite these issues, there are several animal procedures that are
claimed to model certain aspects of depressive symptoms and that are used
extensively in antidepressant drug discovery (Figure 9.2).

Figure 9.2 The three most commonly used tests in antidepressant drug discovery. Values
represent the number of experiments performed with each test as of 2012 ( Sources: HCAPLUS,
Medline, Embase, and Biosis.)
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9.3.1.1 Preclinical Measures of Depression
These models are based on epidemiological evidence that stress and adverse
psychosocial experiences often precede the onset, or predict the recurrence, of
depressive episodes. They can be subdivided into several categories based on the
behavioral endpoint related to the depressive symptoms [33].

Negative Affect This refers to a form of behavioral passivity and quiescence, often
referred to as “despair,” occurring in many species upon exposure to uncontrollable
stress. This increase in inactivity can be delayed or normalized by antidepressants.
Tests that measure this activity or escape deficit include either simple behavioral
procedures (e.g., forced swimming [34] and tail suspension [35]) or more elaborate
paradigms (e.g., learned helplessness [36]). By far the most widely utilized is the
forced swimming test, which can be used with rats and mice. The common
application of this test is linked directly to the robust and reproducible effects of
monoamine reuptake inhibitors.

Positive Affect or Hedonia This refers to the ability to experience pleasure.
Reduction in this behavior, often referred to as anhedonia, is commonly observed
in MDD and represents a hallmark endophenotype of this condition [37]. Common
behavioral tests used to quantify anhedonia in rodents are the sucrose preference
test, intracranial self-stimulation (ICSS), and sexual behavior [38–40]. The sucrose
preference test is based on the idea that repeated mild unpredictable stressors will
lead to a reduction of sucrose consumption. The test is normally run under
conditions of free access to sucrose and water, and anhedonia is quantified based
on the ratio of sucrose to water consumption over that time. ICSS behavior allows a
direct evaluation of the sensitivity to reward in animals. Several approaches,
including electrical stimulation of basal forebrain [41] and ventral tegmental area
[40], have been used. In this procedure, rats are allowed to electrically self-stimulate
the targeted brain area. Following repeated exposure to a variety of stressors,
stimulation threshold is generally increased in stressed rats, suggesting a decrease
in the rewarding properties of brain stimulation (i.e., a correlate of anhedonia).
Sexual behaviors have also been used to quantify anhedonia [42,43]. Pharmaco-
logical studies using antidepressants have shown that these deficits in hedonic
behaviors can be normalized following chronic treatment of these agents.

Socioaffective Function Socioaffective alterations are another important feature of
MDD symptoms [37]. Studies in primates and rats have demonstrated the
occurrence of deficits in social behaviors upon repeated exposure to stressors, such
as maternal separation or social defeat. The most salient aspects of socioaffective
alterations are expression of a stereotypical prostrated and socially unresponsive
posture (in primates), the exacerbation of socially submissive behaviors, and social
avoidance (in primates and rats). Despite the strong face validity, primate models of
socioaffective deficits have been rarely used in antidepressant drug discovery
because of obvious technical and ethical limitations [44]. Rodent social stress
models such as the social defeat paradigm [45] and tests of dominant–submissive
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behavior such as the visible burrow system procedure [46,47] provide a number of
valid alternatives to examine antidepressant drug effects.

Cognition According to the cognitive model of depression described by Aaron
Beck �40 years ago, biased acquisition and processing of information have a
primary role in the development and maintenance of depression [48]. This model
derives from the observation that MDD patients overemphasize negatively valenced
information, resulting in difficulties in redirecting their attention or thoughts away
from negative beliefs. Although pessimistic decision biases per se cannot be
modeled in animals, there are several behavioral tasks of attention and executive
function (e.g., CANTAB battery [49]) in rodents and primates that could serve to
measure cognitive deficits in MDD models. Unfortunately, these tests are
technically challenging and not necessarily suitable for drug testing.

9.3.1.2 Endophenotype Models of Depression
The last two decades have seen the emergence of endophenotype models of
depression, with the engineering of animals that are inherently depression prone.
For example, animals carrying mutations replicating naturally occurring single-
nucleotide polymorphisms that alter the function or candidate genes for MDD,
such as BDNF [50], TPH2 [51], 5-HTT [52], DISC1 [53], or CRHR1 [54], have been
reported to display depression-like phenotypes. However, the lack of a highly
penetrant mutation associated with MDD, along with the unclear epidemiological
evidence that these genetic variants significantly increase the MDD risk, seriously
questions the idea that these mutants represent valid models of depression.
Another approach involves the identification of animal populations that display
inherently depression-like behaviors. Examples are inbred rat strains, such as
Flinders sensitive line (FSL) [55] and Wistar Kyoto (WKY) [56], and selectively bred,
“high reaction to stress test” (HR) [57], “swim low-active” (SwLo) [58], or “inbred
learned helpless” (cLH) [59] rat and mouse lines. These animals have been valuable
as models to screen for novel anxiolytics.

9.3.2
Bipolar Disorder

Bipolar disorder (BPD) is phenotypically a very complex disease, characterized by
vulnerability to episodic depression and mania and spontaneous cycling. Because
of its heterogeneous clinical phenotype, along with the relative lack of knowledge
about its underlying pathophysiology, the development of animal models for BPD
has been difficult [60,61]. One approach for the development of appropriate tests
has been to model separately a number of its critical behavioral aspects. For
example, the most widely used test that has been validated in the context of mania
includes psychostimulant-induced hyperactivity [62]. This test was developed on
the basis of the observation that psychostimulants, such as amphetamine, induce
mania in susceptible individuals and that mood stabilizers can prevent these
effects. There have been attempts to model other components of the manic pole of
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BPD in mice, such as reward seeking (using the sweet solution preference test),
intrusive or aggressive behavior (using the resident–intruder paradigm), and
increased vigor and resilience to despair (using a variation of the forced swim test).
It has been suggested that these tests could be integrated into a coherent and
continuous test battery [60].
Large-scale candidate and genome-wide association studies have generated a

rapidly growing list of risk genes for BPD. Despite the uncertainty as to whether,
and to what extent, risk variance causes gene dysfunction and whether risk genes
are causally linked to behavioral abnormalities in BPD, there is a plethora of
mutant rodent strains that have been generated using genetic (e.g., gene
transgenic, knockout, or mutation knock-in manipulation) or other biological
means (e.g., viral vector-based gene overexpression or knockdown), which show
behavioral clusters or activity patterns reminiscent of mood syndromes [63]. These
include mCLOCK [64], glutamate receptor 6 (GluR6)�/� [65], extracellular signal-
regulated kinase-1 (ERK1)�/� [66], opioid receptor, and glycogen synthase kinase-3
(GSK-3)�/� [67]. This so-called reverse translation model animal approach has so
far been used to analyze the causal relationship between biological abnormalities
resulting from genetic BPD risk variants, early-life environmental factors, and
behavioral manifestations of BPD, but it will certainly be essential for the
development of true novel drug therapies.

9.4
Translation to Clinics: Limitations and Difficulties

Most of the tests described were developed 30 years ago and have been used since
then with little modifications. Because of the failure of virtually all anxiolytic and
antidepressant drug development programs during the past decades, the capability
of current models to detect new molecules with mechanisms of action different
from the prototypical BZs and monoamine-interacting drugs has been repeatedly
questioned. Several comprehensive reviews have been published in recent years
discussing the pros and cons of each model and proposing guidelines for their
improvement, with a strong consensus on the need to better incorporate etiological
factors in the design of novel paradigms [33,68,69]. We summarize herein some of
the potential solutions for how preclinical research in this area can be improved.
Classical conflict or despair tests, such as the elevated plus maze or forced

swimming, have proven to be of limited utility for detecting non-BZ anxiolytic or
nonmonoaminergic antidepressant activity, respectively, and should only be
employed with this caveat in mind. On the other hand, their throughput is high
and they can be used as first-line screening assays when performing selection from
large libraries of compounds. As many anxiety and depression tests are highly
sensitive to procedural variables and environment factors, the tests should be
validated in-house and methods fully reported. Integrating results from multiple
preclinical tests and developing tests that assess multiple symptom-related
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behaviors (e.g., MDTB, chronic mild stress) (Figure 9.3) will increase confidence in
the potential of a novel target. Anxiety tests and models that are based on abnormal
learning and cognitive processes in anxiety disorders (e.g., fear generalization and
impaired fear extinction) may offer a tractable and translatable approach. Anxiety or
depression models that generate excessive levels of anxiety- or despair-like behavior
(e.g., by chronic stress exposure, gene mutation, or selected breeding) may be
closer to the clinical situation and thereby have better predictive power than simple
assays. Because rodent strains vary greatly in anxiety- or depression-like behavior
and response to known drugs, genetic background must be a principal considera-
tion in choosing subjects and interpreting results.
Clearly, the growing burden of anxiety and mood disorders requires better

treatment options. Future research advances in both biological information and
behavioral methodology will be essential for the rapid development of true novel
drug treatments for relieving anxiety and mood symptoms.
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