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Introduction

There is a bewildering diversity of tests that claim face, con-
struct, and/or predictive validity as animal models of anxiety
disorders (for a recent review see Cryan and Sweeney, 2011).
Most of these procedures use rats or mice as subjects and involve
exposure of subjects to external (e.g., cues earlier paired with
footshock, bright light, predator) or internal (e.g., drug states)
stimuli that are assumed to be capable of inducing anxiety
in animals. The last two decades have seen the emergence of
endophenotype models of anxiety, which are often referred to as
trait anxiety tests. Endophenotypes do not vary from moment
to moment and are considered to be enduring features of an
individual. They are cognitive, psychological, anatomical, or
biochemical traits, which are hereditary and represent reliable
markers of both the disease state and disease risk (Hasler et al.,
2004). It has been suggested that the endophenotypes observed
in anxiety disorders represent facets of disease more amenable
to the development of animal models (Gottesman and Gould,
2003). Indeed, the traits encountered in anxiety disorders such
as autonomic hyperarousal, trauma-induced cognitive deficits,
compulsatory behaviors, startle response, sleep disturbances,
and avoidance or difficulty to escape areas can all be read-
ily modeled (Cryan and Holmes, 2005). These models either
use rodents that have been selected for emotional reactivity
or employ constitutive genetic manipulations such as targeted
deletion, insertion, or mutation of a gene for the purpose of
altering the protein product encoded by the gene (Jacobson and
Cryan, 2010).

The aim of the present chapter is to provide an overview of
mouse models of anxiety disorders generated by constitutive
genetic manipulations. Strains and selected lines that display
endophenotypes for anxiety disorders are reviewed by Holmes
in Volume 1 of this book series (Holmes, 2014). A review of
the literature indicates that nearly 50 strains of mice have been
generated by using gene-targeting technology, which display
a phenotype consistent with increased anxiety (Table 21.1).
While many of these phenotypes appear to reflect the known
function of the target in emotional processes, a few others
include genes that have not been shown to be involved in anx-
iety behaviors earlier (e.g., fyn protooncogene, mas oncogene,

tumor necrosis factor-o; for an earlier review of these models
see Belzung and Griebel, 2001). The focus of the current
chapter will be on models involving genetic modifications of
the serotonin (5-HT), GABA, and the corticotropin-releasing
factor (CRF) systems, as they have been shown to play a crucial
role in the modulation of anxiety behaviors.

There are several other mutants generated from the
hypotheses based on the mechanisms of action of clinically effi-
cacious anxiolytics, or to reproduce a human genetic mutation
thought to be linked to anxiety. Examples include null muta-
tions in the monoamine system such as monoamine oxidase A
(MAO-A), catechol-O-methyltransferase (COMT), and nore-
pinephrin transporter (NET). The involvement of the endo-
cannabinoid system in anxiety behavior has likewise stimu-
lated the generation of mutants implicated in this pathway, such
as null mutants of CB1 receptors and fatty acid amide hydro-
lase (FAAH), the principal enzyme responsible for the degrada-
tion of the endogenous cannabinoid, anandamide. The anxiety-
related phenotype of these mutants are summarized in Table
21.1, and has been reviewed elsewhere (Belzung et al., 2008;
Belzung and Griebel, 2001; Cryan and Sweeney, 2011; Holmes,
2001; Jacobson and Cryan, 2010) and readers are referred to
these publications for further details.

Genetic models of anxiety based on
manipulations of the 5-HT system

Serotonin has long been shown to participate in the etiology and
treatment of anxiety (Griebel, 1995). The most common treat-
ments for many anxiety disorders are the selective 5-HT reup-
take inhibitors (SSRIs), which are thought to exert their thera-
peutic effects by increasing extracellular 5-HT levels (Gartside
et al., 1995), and to a lesser extent, the 5-HT14 receptor partial
agonists, which have been suggested to produce their anxiolytic
activity by activating 5-HT 5 heteroreceptors in forebrain areas
such as the cortex and striatum (Akimova et al., 2009; Goodfel-
low et al., 2009; Zhang et al., 2010). A major finding has been
the discovery of genetic variation in the 5-HT transporter (5-
HTT) and the 5-HT 4 receptor, and its influence on emotional
traits. Lesch and colleagues (1996) were the first to report that
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Table 21.1 Anxiety-related phenotypes of genetic manipulation in mice.
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Table 21.1 (cont)
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Table 21.1 (cont)

Gene Mut Genetic background " Models References
Glutamate mGluR4 KO C57BL/6 EZM, OF Davis et al, 2012
Glutamate mGluR5 KO 129Sv, C57BL/6 EPM Wu et al., 2007
Glutamate mGIuR8 KO ICR EPM Linden et al., 2002
KO C57BL/6J EPM, OF Duvaisin et al,, 2005
129SvEv EPM Sparta et al,, 2007
129/0laHsd, C57BL/6 EPM, OF Robbins et al.,, 2007
C57BL/6)J AS, EZM Duvoisin et al, 2011
Hdc KO C578Bl6/J EPM, LD, OF Acevedo et al,, 2006
Interferon y KO 129, C57BL/6 EPM Kustova et al,, 1998
Interleukin 6 KO 129, C57BL/6 EPM Armario et al., 1998
Mas oncogene KO 129, C57BL/6 EPM Walther et al., 1998
Midkine KO 129 EPM Nakamura etal,, 1998
NCAM KO 129/0la/Hsd, C578L/6) EPM, LD Stork et al, 1999
Nicotinic a4 KO BALB/c, C57BL/6 EPM Ross et al., 2000
Nociceptin Tg 129/0la, C57BL/6 AS, LD Ouagazzal et al., 2003
NOS KO C57BL/6 EPM, OF Frisch et al, 2000
Nociceptin KO 129, C57BL/6 EPM, LD, OF Koster et al,, 1999
Nociceptin R KO 129, C57BL/6J, CD1 EPM, ETM, LD Gavioli et al., 2007
NPY KO 129, C57BL/6 EPM Palmiter et al, 1998
KO 1295y, C57BL6 AS, EPM, OF Bannon et al, 2000
KO 129SvJ, C57BL/6 EPM, OF Painsipp et al, 2011
Tg C57BL/6, DBA/2 EPM Inuietal, 1998
NPY'Y, KO 129Sv), C57BL/6 LD Karl et al, 2006
Preproenkephalin KO 129,CD1 EPM Konigetal, 1996 *
Puromycin-sensitive aminopeptidase KO BALB/c EPM Osada et al., 1999
SF1 KO C57BL/6 EPM, LD, MB, OF Zhaoetal, 2008
Single-minded 2 Tg 129Sv, C57BL/6, SIL EPM Chrast et al, 2000
TRH-R2 KO 129/5vJ NSF Sun et al., 2009 E
TgACtBE Tg C57BL/6 EPM, OF Sekiyama et al,, 2009
TgNTRK3 Tg B6, SIL-F1J EPM, EZM, MDTB Dierssen et al, 2006
Tumor necrosis factor-o Tg C57BL/6, CBA LD Fiore et al, 1998
TSC-DN Tg ? EPM, OF Enninger and Silva, 2011
Vasopressin V1a Tg 129Sv, C57BL6 LD Bielsky et al., 2005

AS, acoustic startle; CFS, conditioned fear stress; CER, conditioned emotional response; COMT, catechol-O-methyltransferase; DAO, D-amino-acid oxidase; EPM,
elevated plus maze; ET, emergence test; ETM, elevated T maze; EZM, elevated zero maze; FAAH, fatty acid amide hydrolase; FET, free exploration test; FMR1, fragile
X mental retardation; FNE, forced novelty exploration; Hdc, histidine decarboxylase; KD, knockdown; KI, knock-in; KO, knockout; LD, light/dark test; MB, marble
burying; MC, mirror chamber; Mut, mutation; NCAM, neural cell adhesion molecule; NO, novel object; NOS, nitric oxide synthase; NSF, novelty-suppressed feeding;
OF, open field; SA, successive alleys; SEP, shock—escape paradigm; SF1, steroidogenic factor 1; S, social interaction; SIH, stress-induced hyperthermia; ST, staircase

test; Tg, transgenic; TRH, thyrotropin releasing hormone; TSC, tuberous sclerosis; VOG, Vogel conflict test.

individuals carrying the S allele of the 5-HTT gene displayed
higher levels of trait anxiety than LL homozygotes. This obser-
vation was confirmed by several other studies, which demon-
strated an association between the S allele and various measures
of heightened fear and anxiety in normal populations (Hariri
and Holmes, 2006). A functional polymorphism in the pro-
moter region of the human Htrla gene (coding for the human

5-HT, receptor) that regulates receptor levels has been shown
to be linked to stress-related disorders, such as depression,
response to antidepressants, and amygdala reactivity (Fakra
et al., 2009; Le Francois et al., 2008; Lemonde et al., 2003).

In this context, 5-HT; 4 and 5-HTT knock-out (KO) mice
provide a unique means to study the effect of loss of Hirla
and 5-HTT gene function on anxiety-related behaviors under
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genetically and environmentally controlled conditions. In 1998,
Ramboz and colleagues claimed that mice lacking the 5-HT;a
receptor by homologous recombination may represent a valid
animal model of anxiety-related disorder since they showed
increased emotionality in the elevated plus maze test (Ram-
boz et al., 1998). This finding was confirmed by several other
studies, which demonstrated that KO mice lacking the 5-HT;5
receptors display increases in fear-related behaviors in a vari-
ety of different experimental procedures, including elevated
plus maze, open field, stress-induced hyperthermia, light/dark,
and novelty-suppressed feeding tests (Bailey and Toth, 2004;
Gleason et al,, 2010; Gross et al., 2002; Heisler et al., 1998;
Klemenhagen et al., 2005; Parks et al.,, 1998; Pattij et al,
2002a; Toth and Sibille, 1998; Tsetsenis et al., 2007; see Table
21.1). It is interesting to note that the anxiety-like pheno-
type was observed in different strains based either on single
(i.e., 129/Sv, Swiss, B6, or C57BL/6]) or mixed background,
indicating a robust anxiety-like phenotype of 5-HT; mutant
mice. Gain-of-function experiments, in which 5-HT;, recep-
tors were ectopically overexpressed in forebrain areas such as
the cortex and striatum, reversed the increased anxiety behav-
ior in 5-HT;4, KO mice (Gross et al., 2002), while the loss-
of-function approach, where 5-HT;, autoreceptors were selec-
tively suppressed throughout life showed increased anxiety
in the adult. Conversely, loss of endogenous heteroreceptors
beginning either in the early postnatal period or in adulthood
was not sufficient to impact anxiety-like behavior, suggesting
that under normal conditions, endogenous 5-HT, forebrain
heteroreceptors are not the primary mediators of 5-HT’s effect
on developing anxiety circuitry (Richardson-Jones et al., 2011).
Pharmacological studies using 5-HT;, receptor KO mice are
sparse and were mainly undertaken to confirm the involvement
of the 5-HT; 4 receptor in the anxiolytic-like effects of 5-HT; 4
agonists, rather than to screen potential anxiolytics. Not sur-
prinsingly in these studies, the 5-HT;4 receptor agonists and
anxiolytic agents, buspirone and flesinoxan, were inactive in
5-HT;4 KO mice (Pattij et al., 2000; Ramboz et al., 1998), con-
firming the involvement of this receptor in the anxiolytic-like
action of these molecules. A few studies showed that the proto-
typical benzodiazepine (BZ) anxiolytics, diazepam and alpra-
zolam, produced anxiolytic-like effects in 5-HT;4 KO mice by
attenuating their anxiety-related phenotype (Bailey and Toth,
2004; Pattij et al., 2002a, 2002b).

Initial studies examined the effects of loss-of-function of
the 5-HT'T and observed increased anxiety in various tests that
are validated for their sensitivity to drugs that affect anxiety
in humans, such as the elevated plus maze, the open field,
the novelty-induced suppression of feeding, and light/dark
exploration tests (Holmes et al., 2003c, 2003d; Table 21.1).
This anxiety-like phenotype has been replicated in a separately
generated 5-HTT KO mouse model, and a study using a third
line of mutants lacking the C-terminus of the 5-HTT also
revealed heightened anxiety-like behavior in 5-HTT KO mice
(Ansorge et al., 2004; Heiming et al., 2009; Line et al., 2011;
Lira et al., 2003; Murphy and Lesch, 2008; Wellman et al., 2007;

Zhao et al., 2006). As is the case with the 5-HT;4 receptor, the
effects of genetic inactivation of the 5-HTT on anxiety-like
behavior in mice are robust and provide an independent line
of evidence supporting a link between the low-expressing
5-HTT gene variant with anxiety in humans. However, despite
compelling evidence that 5-HTT KO mice may represent a
valid model of anxiety, no clinically effective anxiolytic drugs
have been tested in these animals.

In contrast to the robust anxiety-like phenotype seen in
5-HT;a and 5-HTT mutant mice, there are a few, sometimes
unconvincing or anecdoctal, reports on increased anxiety-
related behaviors following the deletion of other 5-HT recep-
tors or elimination proteins (Table 21.1). There is, for example,
evidence of an anxiety-like phenotype in 5-HT,¢ receptor KO
mice in the emergence test (Tecott et al., 1998). However, perfor-
mance in this test is strongly influenced by alterations in spon-
taneous locomotor activity, suggesting that the behaviors dis-
played by 5-HT,c KO mice were unrelated to anxiety.

In summary, both 5-HT;4 and 5-HTT KO mice appear to
be valid models of anxiety. In this context, it is interesting to
note that the anxiety-like behavior in the 5-HTT mice can be
normalized by the 5-HT;4 antagonist WAY 100635, suggest-
ing that the postsynaptic 5-HT4 receptor is a participant in
these anxiety-like behaviors (Holmes et al., 2003d). Moreover,
transient pharmacological inhibition of 5-HTT by the SSRI flu-
oxetine during early development has been shown to mimic
the anxiety phenotype of 5-HTT mutant mice, suggesting that
a developmental mechanism explains how low 5-HTT func-
tion increases vulnerability to anxiety disorders (Ansorge et al.,
2004).

Genetic models of anxiety based on

manipulations of the GABA system

It is widely acknowledged that y-aminobutyric acid (GABA),
the main inhibitory neurotransmitter in the brain is implicated
in the pathophysiology of several psychiatric disorders, includ-
ing anxiety and depression (Brambilla et al., 2003). There are
two classes of GABA receptors: ionotropic GABA, receptors
and metabotropic GABAg receptors. Whereas GABA, recep-
tors are made up of some 20 protein subunits (six different a
subunits, three B, three <y, and several other subunits, which
are generally less abundantly expressed: 8, , 6, and &; Barnard
et al,, 1998), the composition of which determines the function
of the receptor complex, GABAg receptors are heterodimers
made up of two subunits, GABAg() and GABAg(y), both nec-
essary for GABAg receptors to be functionally active (Calver
etal., 2002). Benzodiazepines and compounds with known anx-
iolytic properties, such as barbiturates, ethanol, and neuroactive
steroids, exert their effects via an action at the GABA, receptor
(Haefely, 1983; Sieghart, 1995). Although less compelling than
for GABA 4 receptors, there is evidence indicating that GABAp
receptors play a role in anxiety (Cryan and Kaupmann, 2005). In
an attempt to better understand the functional roles of GABAA
and GABAg subunits, mice with genetic alterations at the level
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of individual GABA 4 subunits have been generated. As will be
shown below, several of these mutant lines have been claimed
to represent models of chronic or trait anxiety.

The 2 subunit of GABA, receptors is highly expressed
throughout the developing and adult brain, and is essential
for the formation of the majority of BZ binding sites, normal
GABA, receptor channel conductance, and synaptic clustering
of GABA, receptors at postsynaptic sites (De Blas, 1996; Ess-
rich et al,, 1998; Whiting, 1999). Crestani and colleagues were
the first to report that mice that are heterozygous for the y2
subunit (y2+/~; most mice homozygous for the mutation died
within days of birth) exhibit increased anxiety-like behavior in
a variety of experimental procedures, involving both sponte-
naous anxiety-like behavior and learned fear responses (Table
21.1; Crestani et al., 1999). In particular, Y2/~ mice exhib-
ited increased risk assessment and neophobic behaviors in a
free-choice exploration test that is devoid of intrinsic stress and
marked avoidance to ambiguous stimulus in a cued and con-
textual fear conditioning paradigm. This enhanced emotional
behavior of y2+/~ mice was attenuated by the administration of
the BZ diazepam, an effect that fits well with the observation of
increased sensitivity to BZs seen in anxious patients (O’Boyle
et al,, 1986). The finding of increased anxiety in y27~ mice
has since been replicated by the same group, and also others
(Chandra et al., 2005; Earnheart et al., 2007; Homanics et al.,
1999). In one of these studies (Earnheart et al., 2007), even a
modest and region-specific decrease in y2 subunit-containing
GABA 4 receptors induced in precursors of glutamatergic neu-
rons of the embryo and extending to adult neural progenitor
cells resulted in a pronounced increase in emotionality, suggest-
ing that reduced 2 function during development can serve as
a common molecular substrate for anxiety behaviors. Reports
on increased anxiety-related behaviors following the deletion of
other GABA, receptor subunits are sparse. To the best of our
knowledge there are only three studies that have reported that
mice with targeted ablation of the genes encoding the a1, a2, or
the B3 subunit of the GABA, receptors have enhanced anxiety-
like behaviors under specific experimental conditions (Dixon et
al., 2008; Hashemi et al., 2007; Table 21.1).

The strongest evidence to date from studies in animals for a
role of GABAg receptors in anxiety was demonstrated by the
phenotype of GABAg receptor-deficient mice. Targeted dele-
tion of either the GABAg(;) or GABAg(;) receptor subunits in
mice resulted in a complete loss of GABAg functions accom-
panied by an anxious phenotype in a variety of paradigms,
involving mainly exploratory-based behaviors (Mombereau
et al., 2004, 2004b, 2005; Table 21.1). The GABAg(;) subunit is
predominantly expressed as one of two isoforms: GABAgp(1a) 01
GABApp) (Steiger et al., 2004). In an attempt to dissect the
physiological roles of these isoforms, mice deficient in either the
GABAp(1a) or GABAg(yp) isoforms have been generated. How-
ever, the results of evaluation of these mutants in anxiety tests
revealed only modest increase in anxiety-related behaviors as
compared to GABAg(;) or GABAg(;) KO mice (Jacobson et al.,
2007).

GABA is generated in the brain by the enzyme glutamic acid
decarboxylase (GAD), which exists in two isoforms, GAD65
and GADG67 (Martin and Rimvall, 1993). With the develop-
ment of null mutant mice for GAD65 and GAD67 it has
become possible to investigate the functional relevance of these
isozymes and their contribution to specific GABA-mediated
neural functions. While GAD67 mutant mice die shortly after
birth, GAD65 (Gad65~") null mutant mice are viable (Asada et
al., 1996, 1997). These latter showed increased emotionality in
several tests involving both spontenaous anxiety-like behavior
and learned fear responses (Bergado-Acosta et al., 2008; Kash
et al., 1999; Sangha et al., 2009; Stork et al., 2000, 2003). In
particular, Gad65~/~ mice exhibited increased avoidance behav-
iors of aversive places in the elevated zero maze and open field,
and marked avoidance was observed during both cued and
contextual fear conditioning. These effects were attributed to
the decreased levels of GABA rather than to changes in post-
synaptic GABA, receptor density in these mice as demon-
strated notably by radioligand receptor binding results, which
revealed no changes in these sites (Kash et al., 1999). More-
over, Gad65~~ mice displayed a diminished response to the
anxiolytics diazepam and pentobarbital, effects explained by
a direct consequence of the lack of GAD65-generated GABA
without a modulation by postsynaptic events (Kash et al.,
1999).

Taken as a whole the findings on the effects of genetic
manipulation of the GABA system have provided less convinc-
ing evidence, as compared to the 5-HT system, that mutant mice
of the former system may represent valid models of anxiety dis-
orders. This is particularly true for mice bearing mutations of
GABA, or GABAp receptor subunits, with the exception per-
haps of the y2 subunit of the GABA 4 receptor. Regarding muta-
tions of the GAD isoforms, it would have been interesting to
study the phenotype of heterozygote mice of GAD67 as was
done for the y2 subunit of GABA, receptors, but no such data
are available.

Genetic models of anxiety based on
manipulations of neuropeptide systems

In the past decades, there has been increasing interest and, con-
sequently, active and dynamic research on neuropeptides (for
a recent review see Griebel and Holsboer, 2012). Neuropep-
tides are attractive therapeutic targets for anxiety disorders
(Holmes et al., 2003a). They are short-chain amino acid neu-
rotransmitters and neuromodulators, often localized in brain
regions that mediate emotional behaviors and the response to
stress (Belzung et al., 2006). Progress in identifying the role
of neuropeptides in stress has been facilitated by recent devel-
opments in screening for selective small-molecule neuropep-
tide ligands that cross the blood-brain barrier. Rodents with
mutations in genes encoding neuropeptides and their receptors
have been developed for nearly all targets of interest for anxi-
ety disorders. While there are sparse reports on anxiogenic-like
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phenotypes in mice deficient in or overexpressing galanin GAL-
R1 receptor, neuropeptide Y, or its Y1 and Y2 receptors, chole-
cystokinin CCK2 receptor, nociceptin or nociceptin receptor,
angiotensin Il receptor, vasopressin V1, receptor, enkephalin, or
thyrotropin releasing hormone, the most compelling evidence
comes from studies that investigated targeted mutation of the
corticotropin-releasing factor (CRF) system (Table 21.1).

The 41 amino acid neuropeptide CRF, which is well known
for its crucial role in orchestrating the hypothalamic-pituitary—
adrenal (HPA) axis response to stress, has been the subject of
intense investigation in the pathophysiology and treatment of
anxiety disorders (Griebel and Holsboer, 2012). CRF is synthe-
sized in neurons of the paraventricular hypothalamic nucleus
and released into the pituitary portal blood where it triggers
the secretion of adrenocorticotropin (ACTH) from the ante-
rior lobe. Subsequently, corticosterone (in rodents) or cortisol
(in humans) is secreted from the adrenal cortex into the blood
and exerts a negative feedback on the HPA axis. CRF and its
two G-protein-coupled CRF receptor subtypes (CRF-R1 and
CRF-R2) are widely distributed throughout the brain. In addi-
tion, the biological activity of CRF is influenced by CRF-binding
protein. This glycoprotein is highly expressed in many tissues
including the brain, where it binds to CRF with high affinity,
thus competing with receptor binding and subsequent signaling
(for a review on the CRF system see Steckler and Dautzenberg,
2006).

Genetic manipulations of the CRF system include deletion
of CRF-R1 or CRF-R2, or ablation of the CRE-binding protein,
and ovexpression of the neuropeptide CRF (Table 21.1). CRF-
R1 null mutant mice have been reported to display reduced
anxiety-like behaviors (Gammie and Stevenson, 2006; Kresse
et al., 1998; Muller et al, 2003; Refojo et al., 2011; Smith
et al,, 1998), findings that are compatible with the anxiolytic-
like effects of CRF-R1 antagonists in preclinical studies
(Griebel, 1999; Griebel and Holsboer, 2012). Interestingly, while
CREF-R1 deletion in forebrain glutamatergic circuits was found
to reduce anxiety, selective deletion of CRF-R1 in midbrain
dopaminergic neurons increased anxiety-like behavior, sug-
gesting a bidirectional role of CRF-R1 in anxiety and that an
imbalance between CRF-R1-controlled anxiogenic glutamater-
gic and anxiolytic dopaminergic systems might lead to emo-
tional disorders (Refojo et al., 2011).

CRF-R2 and CRF-binding protein KO, as well as animals
overexpressing CRFE, showed a clear anxiogenic-like phenotype
(Table 21.1). Although initially different groups, using indepen-
dently generated line of CRF-R2 receptor mutant mice, demon-
strated comparable elevated anxiety-related behaviors in CRF-
R2-deficient animals using exploration-based models of anxi-
ety (Bale et al., 2000; Coste et al., 2000; Kishimoto et al., 2000),
more recent experiments using the startle reflex as an index of
anxiety were unable to confirm the earlier findings (Risbrough
et al., 2009). Moreover, this phenotype is difficult to reconcile
with the anxiolytic-like effects observed in numerous studies
using peptide CRF-R2 antagonists or antisense knockdown of
CRF-R2 (Hammack et al., 2003; Heinrichs et al., 1997a; Ho et al.,

2001; Liebsch et al., 1999; Pelleymounter et al., 2002; Radulovic
et al., 1999; Sananbenesi et al., 2003; Takahashi et al., 2001).
Additional research would be needed to further define the
role of CRE-R2 receptors in anxiety behaviors. However, the
finding that blockade of the CRF-R2 receptor could have
negative effects on cardiovascular function has dramatically
reduced research efforts on this target within the last decade.
As indicated above, transgenic mice conditionally overexpress-
ing CRF have been consistently reported to display a con-
sistent anxiety-like phenotype and elevation in corticosterone
level (Karolyi et al., 1999; Kolber et al., 2010; Lu et al,
2008; Ramesh et al., 1998; Stenzel-Poore et al., 1996), which
fits well with the numerous findings showing that cen-
tral infusion of CRF produced anxiogenic-like effects and
stimulates corticosterone release (Griebel, 1999). Altogether,
these studies participated greatly in the demonstration of
the importance of the CRF system for controlling anxious
behavior.

Caveats in genetic models of anxiety
disorders

These genetic animal models of anxiety have at first glance clear
advantages over classical anxiety models in which baseline lev-
els of anxiety of a “normal” subject are increased artificially by
exposure to aversive stimuli. They may provide a unique oppor-
tunity to study human anxiety and emotional disorders. How-
ever, all these genetic models are based on the deletion of a sin-
gle gene, and it is widely acknowledged that the modulation of
anxiety processes involves multiple genes. It is clear that any
behavioral phenotype observed in a gene mutant mouse will
be the product of a complex, epistatic interaction between the
mutation and the genetic background on which it is placed.
Therefore, it can hardly be claimed that mice with targeted
mutation represent models of “general” anxiety disorders, and it
would be unreasonable to use them for the screening of poten-
tial novel anxiolytics acting at a target unrelated to the neuro-
transmitter system of the mutation. It is also important to note
that mutant mice studies use DNA constructs and embryonic
stem cells invariably derived from 129 substrains (e.g., 129/Sv],
129/SvEv, 129/0la), later mixed with a separate inbred strain
(often C57BL/6). Strain differences in emotionality have repeat-
edly been reported (Griebel et al., 2000). As a striking exam-
ple, there are marked differences in anxiety-related behaviors
between C57BL/6 and 129 substrains and the outcome of a
study using mutant mice may be dependent upon which 129
substrain is tested (Holmes, 2001). Moreover, it is notewor-
thy that most of the anxious phenotypes of mutant mice were
observed in a limited number of anxiety assays, mainly based
on avoidance and exploration behaviors (see column 3 of Table
21.1). Therefore, it is not clear whether these mice can be con-
sidered as models of “certain” aspects of anxiety or “global” anx-
iety. There is no “gold standard” among the anxiety tests. Ide-
ally, the anxious phenotype should be elicited across tests that
involve different aspects of the anxiety repertoire.
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Alterations across the entire behavioral repertoire following
genetic intervention can often confound the analysis of anx-
iety behavior. It is vital that such confounding behaviors are
taken into account, thus avoiding erroneous interpretations of
behavioral data. A thorough determination of any confounding
abnormalities present in genetically modified animals prior to
behavioral testing is strongly recommended. Other factors that
can influence behavior in anxiety tests, such as early life experi-
ence, previous test exposure, and compensatory changes, have
been discussed elsewhere and readers are referred to these pub-
lications for further details (Belzung et al.,, 2008; Belzung and
Griebel, 2001; Cryan and Holmes, 2005; Jacobson and Cryan,

Conclusion

Development of genetic animal models has proven invaluable in
the dissection of the neurobiological basis of anxiety behavior
and in indicating potential therapeutic avenues for treatment
of anxiety disorders. The issue of genetic background and other
problems more associated with the behavioral methodology
highlight some of the caveats that are essential to consider when
using genetically manipulated mice. Combining these genetic
animal models with endophenotype-based and translationally
valid models of anxiety should represent a central strategy in
future research efforts for developing novel treatments for anx-

2010).
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